Home
Class 11
MATHS
[" If "A" and "B" are two non-singular m...

[" If "A" and "B" are two non-singular matrices "],[" of order "3" such that "AA^(T)=2I" and "],[A^(-1)=A^(T)-A*adj(2B^(-1))" ,then det "(B)" can be: "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

If A, B are two non-singular matrices of same order, then

" If "A" and "B" are non zero matrices of order "3" such that "3A+2B=A^(T)" ,then "det(A+B)" is "

If A and adj A are non-singular square matrices of order n, then adj (A^(-1))=

If A and adj A are non-singular square matrices of order n, then adj (A^(-1))=

If A, B are two non - singular matrices of order 3 and I is an identity matrix of order 3 such that "AA"^(T)=5I and 3A^(-)=2A^(T)-Aadj(4B) , then |B|^(2) is equal to (where A^(T) and adj(A) denote transpose and adjoint matrices of the matrix A respectively )

If A and B are square matrices of order 3 such that det.(A)=-2 and det.(B)=1, then det.(A^(-1)adjB^(-1). adj (2A^(-1)) is equal to