Home
Class 12
MATHS
x^(2)y(1)^(2)+xyy(1)-6y^(2)=0...

x^(2)y_(1)^(2)+xyy_(1)-6y^(2)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

y^(2)=a(b-x)(b+x) is a solution of the D.E. A) y_(2)+x(y_(1))^(2)+yy_(1)=0 B) xyy_(2)+x(y_(1))^(2)-yy_(1)=0 C) xyy_(2)-x(y_(1))^(2)+yy_(1)=0 D) yy_(1),y_(2)=x^(2)

Form differential equation for x^(2)+(y-a)^(2)=a^(2) A) y^(2)=x^(2)+2xyy_(1) B) x^(2)=y^(2)+(2xy)/(y_(1)) C) (y_(1))^(2)=y^(2)+2xyy_(1) D) y^(2)y_(1)=x^(2)+2xy

Form differential equation for (x-a)^(2)+y^(2)=a^(2) A) (x+yy_(1))^(2)=y^(2) B) (xy_(1)+y)^(2)=y^(2) C) y^(2)=x^(2)+2xyy_(1) D) x^(2)=y^(2)+2xyy_(1)

Form differential equation for Ax^(2)-By^(2)=0 A) xyy_(2)+x(y_(1))^(2)-yy_(1)=0 B) y_(1)=y/x C) y_(1)=x/y D) y_(1)=xy

The radical centre of the circles x^(2)+y^(2)=9 , x^(2)+y^(2)-2x-2y-5=0 , x^(2)+y^(2)+4x+6y-19=0 is A) (0,0) (B) (1,1) (C) (2,2) (D) (3,3)

Find the centre and radius of each of the following circle : (i) x^(2)+y^(2)+4x-4y+1=0 (ii) 2x^(2)+2y^(2)-6x+6y+1=0 (iii) 2x^(2)+2y^(2)=3k(x+k) (iv) 3x^(2)+3y^(2)-5x-6y+4=0 (v) x^(2)+y^(2)-2ax-2by+a^(2)=0

If (-1/3-1) is a centre of similitude for the circles x^(2)+y^(2)=1 and x^(2)+y^(2)_2x-6y-6=0 then the length of common tangent of the circles is

If (-(1)/(3),-1) is a centre of similitude for the circles x^(2)+y^(2)=1 and x^(2)+y^(2)-2x-6y-6=0, then the length of common tangent of the circles is

The radical centre of circles represented by S_(1)-=x^(2)+y^(2)-7x-6y-4=0,S_(2)-=x^(2)+y^(2)+10x+6y-4=0