Home
Class 12
MATHS
" Earfort "f(0)=int(0)^(1)(log(1+tan anx...

" Earfort "f_(0)=int_(0)^(1)(log(1+tan anx))/(1+x^(2))dx=(pi)/(8)log2

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(log|1+x|)/(1+x^(2))dx=(pi)/(8)log2

int_(0)^(1)(logx)/(sqrt(1-x^(2)))dx=-(pi)/(2)(log2)

int_(0)^(1)(log(1+x))/(1+x^(2))dx

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

" 8."int_(0)^(oo)(log x)/(1+x^(2))dx

int_(0)^((pi)/(2))log(tan x)*dx

Prove that int_(0)^(pi/4)log(1+tanx)dx=(pi)/(8) log2.

int_(0)^(pi//4) log (1+tan x) dx =?