Home
Class 12
MATHS
[2^x[f^(prime)(x)+f(x)log2]dx...

`[2^x[f^(prime)(x)+f(x)log2]dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int 2^(x) [f'(x) + f(x) (log 2)] dx is

Using first principles, prove that d/(dx){1/(f(x))}=-(f^(prime)(x))/({f(x)}^2)

Using the first principle, prove that d/(dx)(1/(f(x)))=(-f^(prime)(x))/([f(x)]^2)

Using the first principle, prove that d/(dx)(1/(f(x)))=(-f^(prime)(x))/([f(x)]^2)

int \ {f(x)*g^(prime)(x)-f^(prime)(x)g(x))/(f(x)*g(x)){logg(x)-logf(x)} \ dx

Let g(x) be the inverse of an invertible function f(x), which is differentiable for all real xdot Then g^(f(x)) equals. -(f^(x))/((f^'(x))^3) (b) (f^(prime)(x)f^(x)-(f^(prime)(x))^3)/(f^(prime)(x)) (f^(prime)(x)f^(x)-(f^(prime)(x))^2)/((f^(prime)(x))^2) (d) none of these

If f^(prime)(1)=2 and y=f((log)_e x) , find (dy)/(dx) at x=e .

int2^(x)backslash[f'(x)+f(x)log2]|dx is equal to

int2^(x)(f'(x)+f(x)log2)dx is equal to