Home
Class 12
MATHS
[" Let "omega" be complex number such th...

[" Let "omega" be complex number such that "20+2(0+1)=],[" where "z=sqrt(-3)" .If "|[1,-omega^(2)-1,0],[1,-omega^(2)-1,omega^(2)],[1,omega_(2),omega^(2)]|]

Promotional Banner

Similar Questions

Explore conceptually related problems

|[omega+omega^(2),1,omega],[omega^(2)+1,omega^(2),1],[1+omega,omega,omega^(2)]|

Let omega be a complex number such that 2omega+1=z where z=sqrt(-3) . If |{:(1,1,1),(1,-omega^(2)-1,omega^(2)),(1,omega^(2),omega^(7))|=3k , then k is equal to

Let omega be a complex number such that 2omega+1 = z where z = sqrt(-3) . If /_\=|[1,1,1],[1,-1-omega^(2),omega^(2)],[1,omega^2,omega^7]| = 3k , then k is equal to

Let omega be a complex number such that 2omega+1=z where z=sqrt(-3) . If [(1,1,1), (1, -omega^(2)-1 , omega^(2)),(1, omega^(2) , omega^(7))]=3k , then k is equal to

Let omega be a complex number such that 2omega+1=z where z=sqrt(-3) . If |{:(1,1,1),(1,-omega^(2)-1,omega^(2)),(1,omega^(2),omega^(7))|=3k , then k is equal to

Let omega be a complex number such that 2omega+1=z where z=sqrt(-3) . If |{:(1,1,1),(1,-omega^(2)-1,omega^(2)),(1,omega^(2),omega^(7))|=3k , then k is equal to

Let omega be a complex number such that 2omega+1=z where z=sqrt(-3.) If|1 1 1 1-omega^2-1omega^2 1omega^2omega^7|=3k , then k is equal to : -1 (2) 1 (3) -z (4) z

Let omega be a complex number such that 2omega+1=z where z=sqrt(-3.) If|1 1 1 1-omega^2-1omega^2 1omega^2omega^7|=3k , then k is equal to : -1 (2) 1 (3) -z (4) z

Let omega be a complex number such that 2omega+1=z where z=sqrt(-3.) If|1 1 1 1-omega^2-1omega^2 1omega^2omega^7|=3k , then k is equal to : -1 (2) 1 (3) -z (4) z