Home
Class 12
MATHS
If P is any point lying on the ellipse x...

If P is any point lying on the ellipse `x^2/a^2+y^2/b^2=1` , whose foci are `S and S'`. Let `/_PSS'=alpha and /_PS'S=beta` ,then

Promotional Banner

Similar Questions

Explore conceptually related problems

If P is a point on the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 whose foci are S, S^(') " then "PS+PS^(')=

P is any point on the ellipse 9x^2 + 36y^2 = 324 whose foci are S and S' , SP + S'P =

P is any point lying on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(agtb) whose foci are S and S'. If anglePSS'=alpha and anglePS'S=beta , then the value of tan.(alpha)/(2)tan.(beta)/(2) is

P is any point lying on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(agtb) whose foci are S and S' . If anglePSS'=alpha and anglePS'S=beta , then the value of tan.(alpha)/(2)tan.(beta)/(2) is

P is any point on the ellipse 9x^(2) + 36y^(2) = 324 whose foci are S and S'. Sp + S'P =

If P is a point on the ellipse (x^(2))/16+(y^(2))/25=1 whose foci are S and S', then PS+PS'=8.

If P is a point on the ellipse (x^(2))/16+(y^(2))/25=1 whose foci are S and S', then PS+PS'=8.

If P is any point on the ellipse 9x^(2) + 36y^(2) = 324 whose foci are S and S'. Then, SP + S' P equals

If P is any point on the ellipse 9x^(2) + 36y^(2) = 324 whose foci are S and S'. Then, SP + S' P equals

P is any point lying on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(agtb) whose foci are S and S' . If anglePSS'=a and anglePS'S=beta , then the value of tan.(alpha)/(2)tan.(beta)/(2) is