Home
Class 12
MATHS
cos20^(@)*cos40^(@)*cos60^(@)*cos88^(@)=...

cos20^(@)*cos40^(@)*cos60^(@)*cos88^(@)=?

Promotional Banner

Similar Questions

Explore conceptually related problems

cos20^(@)cos40^(@)cos60^(@)cos80^(@)=

cos20^(@).cos40^(@).cos60^(@).cos80^(@)=1/16

cos20^(@).cos40^(@).cos60^(@).cos80^(@)=1/16

Prove that: cos20^(@)cos40^(@)cos60^(@)cos80^(@)=(1)/(16)

Prove that :cos20^(@)cos40^(@)cos60^(@)cos80^(@)=(1)/(16)

Prove that cos20^(@)cos40^(@)cos60^(@)cos80^(@)=(1)/(16)

A=cos20^(@)cos40^(@)cos60^(@)cos80^(@),B=cos60cos42^(@)cos66^(@)cos78^(@) and C=cos36^(@)cos72^(@)cos108^(@)cos144^(@) then

Prove that cos 20^(@)cos40^(@)cos60^(@)cos80^(@)=(1)/(16)

Prove that: i) cos10^(@)cos30^(@)cos50^(@)cos70^(@)=3/16 ii) cos20^(@)cos40^(@)cos60^(@)cos80^(@)=1/16 iii) 4cos12^(@)cos48^(@)cos72^(@)=cos36^(@) iv) cos40^(@) cos80^(@)cos160^(@)=-1/8