Home
Class 14
MATHS
Ify = |cosx| +|sinx|, then dy/dx at (2pi...

If`y = |cosx| +|sinx|`, then dy/dx at `(2pi)/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=|cosx|+|sinx| , then (dy)/(dx)" at "x=(2pi)/(3) is

If y=|cosx|+|sinx| , then (dy)/(dx) at x = (2pi)/3 is

If y=|cosx|+|sinx| , then (dy)/(dx)" at "x=(2pi)/(3) is

If y=|cosx|+|sinx| , then (dy)/(dx)" at "x=(2pi)/(3) is

If y=|cosx|+|sinx|,then(dy/dx)"at"x=(2pi)/3 is

If y=|cosx|+|sinx| then what is (dy)/(dx) at x = (2pi)/3 ?

If y=log(sinx-cosx) , then (dy)/(dx) at x=(pi)/(2) is :

If y=tan^(-1)((sinx+cosx)/(cosx-sinx))," then "(dy)/(dx)" at "x=(pi)/(4)

(i) If y=(cosx)^(sinx) , then find (dy)/(dx) . (ii) If y=(sinx)^(sinx) , then find (dy)/(dx) .

If y = (1+sinx)/cosx then, dy/dx =