Home
Class 12
MATHS
Lim(x->0) (1-cosxcos2xcos3x)/sin^2 (2x)...

`Lim_(x->0) (1-cosxcos2xcos3x)/sin^2 (2x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : lim_(x to 0)(1-cosxcos2xcos3x)/(sin^(2)2x)

Find the value of ("Lim")_(x->0)(1-cos^5xcos^3 2xcos^3 3x)/(x^2)

Solve cosxcos2xcos3x=1/4

Solve cosxcos2xcos3x=1/4

Solve cosxcos2xcos3x=1/4

lim_(x->0)((1-cos2x)sin5x)/(x^2sin3x)

Evaluate the following limits : Lim_(x to 0) (sin 3x cos 2x)/(sin 2x)

If Lt_(xto0)(1-cosxcos2xcos3x.......cosnx)/x^(2) has the value equal to 325 find the value of n.

The value of lim_(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

The value of lim_(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to