Home
Class 12
MATHS
" (iii) If "sin^(-1)((x^(2)-y^(2))/(x^(2...

" (iii) If "sin^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=log_(e)k," then prove that "(dy)/(dx)=(y)/(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=k , k is a constant, then prove that (dy)/(dx)=(y)/(x) .

If log ((x^(2) -y^(2))/( x^(2)+ y^(2))) =a, Prove that (dy)/(dx) =(y)/(x).

if sin^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=c prove that (dy)/(dx)=(y)/(x)

If sin^(-1) ((x^2-y^2)/(x^2+y^2))=k , k is a constant, then prove that (dy)/(dx)=y/x .

If y^(x)=e^(y-x) , then prove that (dy)/(dx)=((1+log y)^(2))/(logy) .

If y = sin(log_(e) x) prove that (dy)/(dx) = sqrt(1-y^2)/x

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(ln x)/((1+ln x)^(2))

If y=sin(log x), then prove that (x^(2)d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0