Home
Class 12
MATHS
[" Let "z in C" be such that "|z|<1." If...

[" Let "z in C" be such that "|z|<1." If "^(omega)=(5+3z)/(5(1-z)^(2))" ,"],[[" A "quad 4Im(omega)>5,],[" B ",5Im(omega)<1],[" C ",5Re(omega)>4],[" D ",5Re(omega)>1]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z in C be such that |z| lt 1 .If omega =(5+3z)/(5(1-z) then

Let z in C be such that |z| lt 1 .If omega =(5+3z)/(5(1-z) then

If |z|=k and omega=(z-k)/(z+k) , then Re (omega) =

If |z|=k and omega=(z-k)/(z+k) , then Re (omega) =

Let z and omega be two complex numbers such that |z|<=1,| omega|<=1 and |z+omega|=|z-1vec omega|=2 Use the result |z|^(2)=zz and |z+omega|<=|z|+| omega|

Let z and omega be two non zero complex numbers such that |z|=|omega| and argz+argomega=pi, then z equals (A) omega (B) -omega (C) baromega (D) -baromega

Let z and omega be two non zero complex numbers such that |z|=|omega| and argz+argomega=pi, then z equals (A) omega (B) -omega (C) baromega (D) -baromega

Let z and omega be two non zero complex numbers such that |z|=|omega| and argz+argomega=pi , then z equals (A) omega (B) -omega (C) baromega (D) -baromega

Let z and omega be two complex numbers such that |z|lt=1,|omega|lt=1 and |z-iomega|=|z-i bar omega|=2, then z equals (a)1ori (b). ior-i (c). 1or-1 (d). ior-1

Let z and omega be two complex numbers such that |z|lt=1,|omega|lt=1 and |z-iomega|=|z-i bar omega|=2, then z equals (a) 1ori (b). ior-i (c). 1or-1 (d). ior-1