Home
Class 12
MATHS
The line lx + my =1 meets the ellipse x^...

The line `lx + my =1` meets the ellipse `x^2/a^2+y^2/b^2=1` in the P and Q.The mid point of chord PQ is (where `k = a^2l^2 +b^2m^2`)

Promotional Banner

Similar Questions

Explore conceptually related problems

The line x = at^(2) meets the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 in the real points iff

The line x=at^(2) meets the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 in the real points if

The line lx+my=n is a normal to the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1

The line lx+my=n is a normal to the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then

The line y=x+rho (p is parameter) cuts the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 at P and Q, then prove that mid point of PQ lies on a^(2)y=-b^(2)x .

The line y=x+rho (p is parameter) cuts the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 at P and Q, then prove that mid point of PQ lies on a^(2)y=-b^(2)x .