Home
Class 12
MATHS
If (1)/(sqrt2) lt x lt 1, then prove tha...

If `(1)/(sqrt2) lt x lt 1`, then prove that `cos^(-1) x + cos^(-1) ((x + sqrt(1 - x^(2)))/(sqrt2)) = (pi)/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)

If 1/(sqrt(2))

If x lt 0 , then prove that cos^(-1)x=pi+tan^(-1)""(sqrt(1-x^2))/x

If x lt 0 , the prove that cos^(-1) ((1 + x)/(sqrt(2(1 + x^(2))))) = (pi)/(4) - tan^(-1) x

If x lt 0 , the prove that cos^(-1) ((1 + x)/(sqrt(2(1 + x^(2))))) = (pi)/(4) - tan^(-1) x