Home
Class 12
MATHS
If the chord joining points P(alpha)a n ...

If the chord joining points `P(alpha)a n dQ(beta)` on the ellipse `((x^2)/(a^2))+((y^2)/(b^2))=1` subtends a right angle at the vertex `A(a ,0),` then prove that `tan(a/2)tan(beta/2)=-(b^2)/(a^2)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the chord joining points P(alpha)a n dQ(beta) on the ellipse ((x^2)/(a^2))+((y^2)/(b^2))=1 subtends a right angle at the vertex A(a ,0), then prove that tan(alpha/2)tan(beta/2)=-(b^2)/(a^2)dot

If the chord joining points P(alpha) and Q(beta) on the ellipse ((x^2)/(a^2))+((y^2)/(b^2))=1 subtends a right angle at the vertex A(a ,0), then prove that tan(alpha/2)tan(beta/2)=-(b^2)/(a^2)dot

If the chord joining points P(alpha) and Q(beta) on the ellipse ((x^2)/(a^2))+((y^2)/(b^2))=1 subtends a right angle at the vertex A(a ,0), then prove that tan(a/2)tan(beta/2)=-(b^2)/(a^2)dot

If the chord joining points P(alpha) and Q(beta) on the ellipse ((x^(2))/(a^(2)))+((y^(2))/(b^(2)))=1 subtends a right angle at the vertex A(a,0), then prove that tan((a)/(2))tan((beta)/(2))=-(b^(2))/(a^(2))

Find the equation of the chord joining point P(alpha) and Q(beta) on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1.

If a chord P_(theta) Q_(phi) of an ellipse (x^(2))/(a^(2)) + (y^(2))/(b^(2)) = 1 subtands a right angle at the vertex A (a,0), then tan ((theta)/(2))* tan ((phi)/(2))=

Prove that the chord joining points P(alpha) and Q (beta) on the ellipse subtends a right angle at the vertex A(a,0) then tan((alpha)/(2)) tan((beta)/(2))=(-b^(2))/(a^(2))

If the chord joining the points P(theta)' and 'Q(phi)' of the ellipse x^2/a^2+y^2/b^2=1 subtends a right angle at (a,0) prove that tan(theta/2)tan(phi/2)=-b^2/a^2 .