Home
Class 12
MATHS
" Prove that "-|vec a timesvec b|^(2)=|v...

" Prove that "-|vec a timesvec b|^(2)=|vec a|^(2)|vec b|^(2)-|vec a*vec b|^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two vectors vec a and vec b ,prove that (vec a xxvec b)^(2)=|vec a|^(2)|vec b|^(2)-(vec a*vec b)^(2)

For any three vectors vec a,vec b,vec c, prove that |vec a+vec b+vec c|^(2)=|vec a|^(2)+|vec b|^(2)+|vec c|^(2)+2(vec adot b+vec bvec c+vec c+vec a)

Prove that |vec(a)xx vec(b)|^(2)=|vec(a)|^(2)|vec(b)|^(2)-(vec(a).vec(b))^(2) =|(vec(a).vec(a),vec(a).vec(b)),(vec(a).vec(b),vec(b).vec(b))| .

For any two vectors vec a and vec b , prove that (vec a xx vec b )^2= |vec a |^2 |vec b|^2 -(vec a. vec b)^2

Prove that |vec a + vec b| = sqrt (|vec a|^2 + |vec b|^2 + 2 vec a * vec b) .

For any two vectors vec a and vec b , prove that: | vec a+ vec b|^2=| vec a|^2+| vec b|^2+2 vec adot vec b , | vec a- vec b|^2=| vec a|^2+| vec b|^2-2 vec adot vec b , | vec a+ vec b|^2+| vec a- vec b|^2=2(| vec a|^2+| vec b|^2) and | vec a+ vec b|^2=| vec a- vec b|^2 iff vec a_|_ vec bdot Interpret the result geometrically.

If vec a,vec b,vec c are unit vector,prove that |vec a-vec b|^(2)+|vec b-vec c|^(2)+|vec c-vec a|^(2)<=9

For any three vectors vec a , vec b , vec c , prove that | vec a+ vec b+ vec c|^2=| vec a|^2+| vec b|^2+| vec c|^2+2( vec adot vec b+ vec bdot vec c+ vec cdot vec a)

Prove that (vec a × vec b)^(2) = a^(2)b^(2)-(vec a . vec b)^(2) .