Home
Class 12
MATHS
[" Fine equations "y=mx+c" and "x" cosat...

[" Fine equations "y=mx+c" and "x" cosat "y" sing "=p" represent the same straight ine,then "],[[p=0,sqrt(1+x^(2))," (B) "c=p sqrt(1+m^(2))," (C) "oo=sqrt(1+m^(2))," (D) "p^(2)+c^(2)+m^(2)=1]]

Promotional Banner

Similar Questions

Explore conceptually related problems

if the equations y=mx+c and xcosalpha+ysinalpha=p represent the same straight line then:

if the equations y=mx+c and x cos alpha+y sin alpha=p represent the same straight line then:

If the equations y=mx+c and x cos alpha+y sin alpha=p represent the same straight line,then p=c sqrt(1+m^(2))(b)c=p sqrt(1+m^(2))cp=sqrt(1+m^(2))(d)p^(2)+c^(2)+m^(2)=1

If the equations y=m x+c and xcosalpha+ysinalpha=p represent the same straight line, then (a) p=csqrt(1+m^2) (b) c=psqrt(1+m^2) (c) c p=sqrt(1+m^2) (d) p^2+c^2+m^2=1

If the equations y=m x+c and xcosalpha+ysinalpha=p represent the same straight line, then (a) p=csqrt(1+m^2) (b) c=psqrt(1+m^2) (c) c p=sqrt(1+m^2) (d) p^2+c^2+m^2=1

If the equations y=m x+c and xcosalpha+ysinalpha=p represent the same straight line, then (a) p=csqrt(1+m^2) (b) c=psqrt(1+m^2) (c) c p=sqrt(1+m^2) (d) p^2+c^2+m^2=1

Every first degree equation in x, y represents a straight line.

If 3x-by+2=0 and 9x+3y+a=0 represent the same straight line, find the values of a and b.

The function y=f(x)=mx+c has

Theorem :-Every first degree equation in x;y represents a straight line.