Home
Class 12
MATHS
" If "log(3)2,log(3)(2^(x)-5)" and "log(...

" If "log_(3)2,log_(3)(2^(x)-5)" and "log_(3)(2^(x)-(7)/(2))" are in A.P.,then "x" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-(7)/(2)) are in A.P, determine the value of x.

If log_(5) 2, log_(5) (2^(x)-5 ) log_(5) (2^(x) - 7//2) are in A.P ., then x =

If log_(3)(2),log_(3)(2^(x)-5),log_(3)(2^(x)-(7)/(2)) are in A.P.Determine the value of x.

If 1,log_(81)(3^(x)+48)" and "log_(9)(3^(x)-(8)/(3)) are in A.P., then find x

If log_(3)^(2) , log_(3)(2^(x) - 5) and log(2^(x) - 7/2) are in A.P then the value is x is

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-(7)/(2)) are in arithmetic progression,determine the value of x.