Home
Class 12
MATHS
(dr)/(dt)=-rt,r(0)=r(0)...

(dr)/(dt)=-rt,r(0)=r_(0)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following initial value problem: (dr)/(dt)=-rt,y(2)=0

Solve the following initial value problem: (d r)/(dt)=\ -r t ,\ r(0) = r_0

If r is the radius, S the surface area and V the volume of a spherical bubble, prove that (i) (dV)/(dt)=4pir^(2)(dr)/(dt)

If r is the radius, S the surface area and V the volume of a spherical bubble, prove that (i) (dV)/(dt)=4pir^(2)(dr)/(dt)

If r is the radius, S the surface area and V the volume of a spherical bubble, prove that (i) (dV)/(dt)=4pir^(2)(dr)/(dt)

If r is the radius, S the surface area and V the volume of a spherical bubble, prove that (i) (dV)/(dt)=4pir^(2)(dr)/(dt)

For the reaction, A+BrarrP,-(d[A])/(dt)=-(d[B])/(dt)=k[A][B] and Rt=(1)/([A_(0)]-[B]_(0))ln.([A][B]_(0))/([B][A]_(0)) when [A]_(0)ne[B]_(0) If [A]_(0)=[B]_(0) then the integrated rate law will be

For the reaction, A+BrarrP,-(d[A])/(dt)=-(d[B])/(dt)=k[A][B] and Rt=(1)/([A_(0)]-[B]_(0))ln.([A][B]_(0))/([B][A]_(0)) when [A]_(0)ne[B]_(0) If [A]_(0)=[B]_(0) then the integrated rate law will be

Find (dr)/(dn) , r=n^(sqrt(n))

Let S be a sphere with radius r. If we approximate the change of volume of S by h.A| _(r_0) +(h^2)/2(dA)/(dr)|_(r=r_0) where A is surface area, when radius is changed from r_0 to (r_0 + h), then the absolute value of error in our approximation is