Home
Class 12
MATHS
int(0)^(1)x(1-x)^(n)dx...

int_(0)^(1)x(1-x)^(n)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1)x(1-x)^(n)backslash dx

Evaluate int_(0)^(1)(tx+1-x)^(n)dx , where n is a positive integer and t is a parameter independent of x . Hence , show that int_0^1 ​ x^k (1−x)^(n−k) dx= P/([.^nC_k(n+1)]) ​ for k=0,1,......n , then P=

If n is a positive integer then int_(0)^(1)(ln x)^(n)dx is :

If n is a positive integer then int_(0)^(1)(ln x)^(n)dx is :

Evaluate: int_0^1x(1-x)^n dx

Evaluate: int_0^1x(1-x)^n dx

evaluate int_(0)^(1)x^(2)(1-x)^(n)dx

If I(mn)=int_(0)^(1)x^(m)(1-x)^(n)dx,(m, n epsilon I, m,n ge 0 ) , then

U_(n)=int_(0)^(1)x^(n)(2-x)^(n)dx and V_(n)=int_(0)^(1)x^(n)(1-x)^(n)dx,n in N and if (V_(n))/(U_(n))=1024, then the value of n is