Home
Class 12
MATHS
Solve the following equation for x: t...

Solve the following equation for `x`: `tan^(-1)((2x)/(1-x^2))+cot^(-1)((1-x^2)/(2x))=(2pi)/3,x >0`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((2x)/(1-x^2))+cot^(-1)((1-x^2)/(2x))=pi/3

Solve the following equation for x:tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(2 pi)/(3),x>0

Solve the following equations tan^(-1)""(2x)/(1-x^(2))+cot^(-1)""(1-x^(2))/(2x)=(pi)/(3)

Solve the following equations: tan^-1((2x)/(1-x^2)) + cot^-1((1-x^2)/(2x)) = pi/3, x > 0

Solve the following equations : tan^(-1). (2x)/(1-x^(2)) +cos^(-1). (1-x^(2))/(2x) = pi/3 , x gt 0

Solve : tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3),xgt0

Solve for x:tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3),-1

tan^(-1)((2x)/(x^(2)-1))+cot^(-1)((x^(2)-1)/(2x))=-(4 pi)/(3)

If :"Tan"^(-1)(2x)/(1-x^(2))+Cot^(-1)((1-x^(2))/(2x))=(pi)/3,xgt0 then