Home
Class 12
MATHS
If f(x)=a+b x+c x^2AAa ,b ,c in R and a...

If `f(x)=a+b x+c x^2AAa ,b ,c in R` and `a ,b ,c` are distinct, then value of `|a b c b c a c a b|` is (where `omega&omega^2` are complex cube roots of unity) `f(1)f(omega)f(omega^2)` (b) `-f(omega)f(omega^2)` `-f(1)f(omega)f(omega^2)` (d) `f(omega)f(omega^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1,omega,(omega)^2 are the cube roots of unity, then (a+b+c)(a+b(omega)+c(omega)^2)(a+b(omega)^2+c(omega)) =

(a+b omega+c omega^(2))(a+b omega^(2)+c omega)

If 1, omega and omega^(2) are the cube roots of unity, then (a+b+c) (a+b omega+c omega^(2))(a+b omega^(2) +c omega)=

If 1, omega and omega^(2) are the cube roots of unity, prove that (a+b omega+c omega^(2))/(c+a omega+b omega^(2))=omega^(2)

If 1,omega,omega^(2) are the cube roots of unity,then the value of (a omega^(2)+b+c omega+d omega^(2))/(a+b omega+c omega^(2)+d) (a,b,c,d in R) is

If omega is a complex cube root of unity, show that frac{a+b omega+c omega^2}{c+a omega+b omega^2} = omega^2

If omega is a complex cube root of unity, show that (a+b) + (a omega +b omega^2 )+(a omega^2 +b omega ) =0

If a , b , c are real numbers, prove that |a b c b c a c a b|=-(a+b+c)(c+b w+c w^2)(a+b w^2+c w), where w is a complex cube root of unity.

" Let "f(x)=int_(x)^(x^2)(t-1)dt" .Then the value of "|f'(omega)|" where "omega" is a complex cube root of unity is "