Home
Class 12
MATHS
If y=sec^-1([sqrtx+1]/[sqrtx-1])+sin^-1(...

If `y=sec^-1([sqrtx+1]/[sqrtx-1])+sin^-1([sqrtx-1]/[sqrtx+1])`, then `dy/dx` is equal to?

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sec^(-1)(sqrtx+1)/sqrtx+sin^(-1)fracsqrtx(sqrtx+1)then dy/dx= ____

y= log(sqrtx+1/sqrtx)

int(sqrtx+1/sqrtx)^2 dx=

If y=sec^(-1) ((sqrtx-1)/(x+sqrtx))+sin^(-1) ((x+sqrtx)/(sqrtx-1))," then " (dy)/(dx)=

if y=sqrtx tan^-1sqrtx , then find dy/dx

y = sqrtx + 1/sqrtx

If y=x^2cos^(-1)(frac[sqrtx-1][sqrtx+1])+x^2cosec^(-1)(frac[sqrtx+1][sqrtx-1]) then prove that frac[d^2y][dx^2]=pi

y = x+sqrtx+1/sqrtx

If y = sin^(-1)((sqrtx-1)/(sqrtx+1))+sec^(-1)((sqrtx+1)/(sqrtx-1)), x gt 0 then (dy)/(dx) =

int (sin^-1sqrtx-cos^-1 sqrtx)/(sin^-1 sqrtx+ cos^-1 sqrtx)