Home
Class 12
MATHS
lim(x->0){(1+x)^(2/x)} (where {x} denote...

`lim_(x->0){(1+x)^(2/x)}` (where {x} denotes the fractional part of x) is equal to.

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part of x) is equal to

lim_(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part of x) is equal to

lim_(x rarr0){(1+x)^((2)/(x))}( where {x} denotes the fractional part of x ) is equal to.

lim_(x->0) {(1+x)^(2/x)} (where {.} denotes the fractional part of x (a) e^2−7 (b) e^2−8 (c) e^2−6 (d) none of these

lim_(x->0) {(1+x)^(2/x)} (where {.} denotes the fractional part of x (a) e^2−7 (b) e^2−8 (c) e^2−6 (d) none of these

lim_(xrarroo) {(e^(x)+pi^(x))^((1)/(x))} = (where {.} denotes the fractional part of x ) is equal to

lim_(x rarr oo){(e^(x)+pi^(x))^((1)/(x))}= where {.} denotes the fractional part of x is equal to

If f(x) = e^(x) , then lim_(xto0) (f(x))^((1)/({f(x)})) (where { } denotes the fractional part of x) is equal to -

lim_(x->oo ){(e^x+pi^x)^(1/x)}= where {.} denotes the fractional part of x is equal to

lim_(x->oo ){(e^x+pi^x)^(1/x)}= where {.} denotes the fractional part of x is equal to