Home
Class 12
MATHS
[" 1.Let "f:[-1,2]rarr[0,oo)" be a conti...

[" 1.Let "f:[-1,2]rarr[0,oo)" be a continuous function "],[" such that "f(x)=f(1-x)" for all "x in[-1,2].],[" Let "R_(1)=int_(-1)^(2)xf(x)dx," and "R_(2)" be the area of the region "],[" bounded by "y=f(x),x=-1,x=2," and the "x" -axis."],[" Then "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:[1,2] to [0,oo) be a continuous function such that f(x)=f(1-x) for all x in [-1,2]. Let R_(1)=int_(-1)^(2) xf(x) dx, and R_(2) be the area of the region bounded by y=f(x),x=-1,x=2 and the x-axis . Then,

Let f:[-1,2] to [0 , oo ) be a continuous function such that f(x)=f(1-x) for all x in [-1,2]. Let R_1= int_(-1)^2 x f(x) dx and R_2 be the area of the region bounded by the y=f(x), x=-1 , x=2 and the x-axis .Then :

Let f : [-1, 2]to [0, oo) be a continuous function such that f(x)=f(1-x), AA x in [-1, 2] . If R_(1)=int_(-1)^(2)xf(x)dx and R_(2) are the area of the region bounded by y=f(x), x=-1, x=2 and the X-axis. Then :

Let f:[-1,2]->[0,oo) be a continuous function such that f(x)=f(1-x)fora l lx in [-1,2]dot Let R_1=int_(-1)^2xf(x)dx , and R_2 be the area of the region bounded by y=f(x),x=-1,x=2, and the x-axis . Then (a)R_1=2R_2 (b) R_1=3R_2 (c)2R_1 (d) 3R_1=R_2

Let f:[-1,2]->[0,oo) be a continuous function such that f(x)=f(1-x)fora l lx in [-1,2]dot Let R_1=int_(-1)^2xf(x)dx , and R_2 be the area of the region bounded by y=f(x),x=-1,x=2, and the x-axis . Then (a) R_1=2R_2 (b) R_1=3R_2 (c) 2R_1 (d) 3R_1=R_2

Let f:[-1,2]->[0,oo) be a continuous function such that f(x)=f(1-x)fora l lx in [-1,2]dot Let R_1=int_(-1)^2xf(x)dx , and R_2 be the area of the region bounded by y=f(x),x=-1,x=2, and the x-axis . Then (a) R_1=2R_2 (b) R_1=3R_2 (c) 2R_1 (d) 3R_1=R_2

Let f:[-1,2]->[0,oo) be a continuous function such that f(x)=f(1-x)fora l lx in [-1,2]dot Let R_1=int_(-1)^2xf(x)dx , and R_2 be the area of the region bounded by y=f(x),x=-1,x=2, and the x-axis . Then (a) R_1=2R_2 (b) R_1=3R_2 (c) 2R_1 (d) 3R_1=R_2

Let f:[-1,2]->[0,oo) be a continuous function such that f(x)=f(1-x)fora l lx in [-1,2]dot Let R_1=int_(-1)^2xf(x)dx , and R_2 be the area of the region bounded by y=f(x),x=-1,x=2, and the x- axis . Then R_1=2R_2 (b) R_1=3R_2 (c) 2R_1=R_2 (d) 3R_1=R_2

Let f:[-1,2]->[0,oo) be a continuous function such that f(x)=f(1-x)fora l lx in [-1,2]dot Let R_1=int_(-1)^2xf(x)dx , and R_2 be the area of the region bounded by y=f(x),x=-1,x=2, and the x- axis . Then R_1=2R_2 (b) R_1=3R_2 (c) 2R_1=R_2 (d) 3R_1=R_2