Home
Class 11
MATHS
For x^2-(a+3)|x|=4=0 to have real soluti...

For `x^2-(a+3)|x|=4=0` to have real solutions, the range of `a` is `(-oo,-7]uu[1,oo)` `(-3,oo)` `(-oo,-7]` `[1,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

For x^2-(a+3)|x|-4=0 to have real solutions, the range of a is a) (-oo,-7]uu[1,oo) b) (-3,oo) c) (-oo,-7] d) [1,oo)

For x^2-(a+3)|x|=4=0 to have real solutions, the range of a is a (-oo,-7]uu[1,oo) b (-3,oo) c (-oo,-7] d [1,oo)

For x^2-(a+3)|x|+4=0 to have real solutions, the range of a is a. (-oo,-7]uu[1,oo) b. (-3,oo) c. (-oo,-7) d. [1,oo)

For x^2-(a+3)|x|+4=0 to have real solutions, the range of a is a. (-oo,-7]uu[1,oo) b. (-3,oo) c. (-oo,-7) d. [1,oo)

For x^2-(a+3)|x|+4=0 to have real solutions, the range of a is (-oo,-7]uu[1,oo) b. (-3,oo) c. (-oo,-7) d. [1,oo)

For x^(2)-(a+3)|x|+4=0 to have real solution,the range of a is (-oo,-7]uu[1,oo) b.(-3,oo) c.(-oo,-7)d*[1,oo)

The quadratic equation (a+3)x^(2)-ax+1=0 has two distinct real solutions a) for a in(-2,6) b) for a in(-oo,0)uu(7,oo) c) for a in(-oo,-2)uu(6,oo)-{-3} d) for a in(0,7)

If e^x+e^(f(x))=e , then the range of f(x) is (-oo,1] (b) (-oo,1) (1, oo) (d) [1,oo)

If e^(x)+e^(f(x))=e, then the range of f(x) is (-oo,1](b)(-oo,1)(1,oo)(d)[1,oo)

If log_(3)(x^(2)-6x+11)<=1, then the exhaustive range of values of x is: (-oo,2)uu(4,oo)(b)(2,4)(-oo,1)uu(1,3)uu(4,oo)(d) none of these