Home
Class 12
MATHS
The number of values of x satisfying the...

The number of values of x satisfying the equation `log_2 (log_3 (log_2 x))) >= sqrt(8-x) + sqrt(x-8)` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation 2log_(3)x+8=3.x log_(9)4

Sum of the values of x satisfying the equation log_(3)(5x-6)log_(x)sqrt(3)=1 is

Number of value(s) of x satisfying the equation log_2 (log_3 (x^2)) =1 is/are (A) 0 (B) 1 (c) 2 (D) 3

The value of x satisfying the equation 2^(log3x)+8=3*x^(log_(9)4), is

Number of value(s) of 'x' satisfying the equation x^(log_(sqrt(x))(x-3))=9 is/are

Number of value(s) of 'x' satisfying the equation x^(log_(sqrt(x))(x-3))=9 is/are

Values of x satisfying the equation abs(log_sqrt3 x-2)-abs(log_3 x-2)=2 are

The value of x satisfying the equation 2^(log_2e^(In^5log 7^(log_10^(log_10(8x-3)))

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :