Home
Class 10
MATHS
(sqrt(a^(2)-b^(2))+a)/(sqrt(a^(2)+b^(2))...

`(sqrt(a^(2)-b^(2))+a)/(sqrt(a^(2)+b^(2))+b)-:(sqrt(a^(2)+b^(2))-b)/(a-sqrt(a^(2)-b^(2)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

(a+sqrt(a^(2)-b^(2)))/(a-sqrt(a^(2)-b^(2)))+(a-sqrt(a^(2)-b^(2)))/(a+sqrt(a^(2)-b^(2)))

The value of (a+sqrt((a)-b^(2)))/(a-sqrt(a^(2)-b^(2)))+(a-sqrt(a^(2)-b^(2)))/(a+sqrt(a^(2)-b^(2)) is

Distance of the points (a,b,c) for the y axis is (a) sqrt(b^(2)+c^(2)) (b) sqrt(c^(2)+a^(2)) (c )sqrt(a^(2)+b^(2)) (d) sqrt(a^(2)+b^(2)+c^(2))

(b^2)/(sqrt(a^2+b^2)+a)

If : a * cos A-b * sin A=c, "then" : a * sin A +b* cos A= A) sqrt(a^(2)+b^(2)-c^(2)) B) sqrt(a^(2)-b^(2)+c^(2)) C) sqrt(b^(2)+c^(2)-a^(2)) D) sqrt(b^(2)+c^(2)+a^(2))

If (sqrt(a + 2b) + sqrt(a - 2b))/(sqrt(a + 2b) - sqrt(a - 2b)) = sqrt3 and a^(2) + b^(2) = 1 , then the find values of a and b. (b) If sqrt((x - sqrt(a^(2) - b^(2)))^(2) + y^(2)) + sqrt((x + sqrt(a^(2) - b^(2)))^(2) + y^(2)) = 2a then prove that (x^(2))/(a^(2)) + (y^(2))/(b^(2)) = 1

If a and b are positive numbers such that a gt b , then the minimum value of a sec theta- b tan theta (0 lt theta lt pi/2) is a) 1/sqrt(a^2-b^2) b) 1/sqrt(a^2+b^2) c) sqrt(a^2+b^2) d) sqrt(a^2-b^2)

If x = (sqrt(a^2+b^2)+sqrt(a^2-b^2))/(sqrt(a^2+b^2)-sqrt(a^2-b^2)) show that b^2x^2-2a^2x+b^2 =0 .

If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)) then bx^(2)+b =