Home
Class 12
MATHS
" Let "I(1)=int(0)^(1)(e^(x))/(1+x)dx" a...

" Let "I_(1)=int_(0)^(1)(e^(x))/(1+x)dx" and "I_(2)=int_(0)^(1)(x^(2)dx)/(e^(x^(3))(2-x^(3)))." Then "(I_(1))/(I_(2))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(1)=int_(0)^(1)(e^(x))/(1+x)dx aand I_(2)=int_(0)^(1)(x^(2))/(e^(x^(3))(2-x^(3)))dx then (I_(1))/(I_(2)) is

Let I_(1)=int_(0)^(1)(5^(x))/(x+1)dx and I_(2)=int_(0)^(1)(x^(2))/(5^(x^(3))(2-x^(3)))dx then (I_(1))/(I_(2))=

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

I=int_(0)^(1)e^(x^(2)-x)dx then

If I_(1)=int_(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I_(2)=int_(0)^((pi)/(2))e^(cosx)(1-x sin x)dx, then [(I_(1))/(I_(2))] is equal to (where [x] denotes the greatest integer less than or equal to x)

If I_(1)=int_(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I_(2)=int_(0)^((pi)/(2))e^(cosx)(1-x sin x)dx, then [(I_(1))/(I_(2))] is equal to (where [x] denotes the greatest integer less than or equal to x)

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

Let I_(1)=int_(1)^(2)(1)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then