Home
Class 11
MATHS
The value of x in (0,pi/2) satisfying th...

The value of x in `(0,pi/2)` satisfying the equation, `(sqrt3-1)/sin x+ (sqrt3+1)/cosx=4sqrt2` is -

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x in (0,(pi)/(2)) satisfying (sqrt(3)-1)/(sin x)+(sqrt(3)+1)/(cos x)=4sqrt(2) is / are

The value of x in (0,pi/2) satisfying (sqrt(3)-1)/(sinx)+(sqrt(3)+1)/(cosx)=4sqrt(2) is / are

The value of x in (0,pi/2) satisfying (sqrt(3)-1)/(sinx)+(sqrt(3)+1)/(cosx)=4sqrt(2) is / are

The value of x in (0,pi/2) satisfying (sqrt(3)-1)/(sinx)+(sqrt(3)+1)/(cosx)=4sqrt(2) is / are

The value of x in (0, (pi)/(2)) satisfying (sqrt(3) - 1)/(sin x) + (sqrt(3) + 1)/( cos x) = 4 sqrt(2) is

The number of values of x in (0, pi) satisfying the equation (sqrt(3) "sin" x + "cos" x) ^(sqrt(sqrt(3)"sin" 2x -"cos" 2x+ 2)) = 4 , is

The number of values of x in (0, pi) satisfying the equation (sqrt(3) "sin" x + "cos" x) ^(sqrt(sqrt(3)"sin" 2x -"cos" 2x+ 2)) = 4 , is

If cos (pi/12) = (sqrt(2) + sqrt(6))/(4) , then all x in (0,pi/2) such that (sqrt(3)-1)/(sin x) + (sqrt(3)+1)/(cos x) = 4sqrt(2) , then find x.