Home
Class 11
MATHS
Let x ,y ,z ,t be real numbers x^2+y^2=...

Let `x ,y ,z ,t` be real numbers `x^2+y^2=9, z^2+t^2=4`, and `xt-y z=6` Then the greatest value of `P=xz` is a. 2 b. 3 c. 4 d. 6

Promotional Banner

Similar Questions

Explore conceptually related problems

Let x,y,z,t be real numbers x^(2)+y^(2)=9,z^(2)+t^(2)=4, and xt-yz=6 Then the greatest value of P=xz is a 2 b.3 c.4 d.6

If x, y, z, t are real numbers such that x^(2)+y^(2)=9, z^(2)+t^(2)=4 and xt-yz=6 then the greatest value of xz is

If x,y,z,t are real numbers such that x^(2) + y^(2) =9,z^(2) + t^(2)=4 and xt-yz=6 , then the greatest value of xz is:

If x,y,z are positive real numbers such that x^(2)+y^(2)+Z^(2)=7 and xy+yz+xz=4 then the minimum value of xy is

If x,y,z are positive real numbers such that x^(2)+y^(2)+Z^(2)=7 and xy+yz+xz=4 then the minimum value of xy is

If x,y,z are positive real numbers such that x^(2)+y^(2)+Z^(2)=7 and xy+yz+xz=4 then the minimum value of xy is

If x,y,z are positive real numbers such that x^(2)+y^(2)+Z^(2)=7 and xy+yz+xz=4 then the minimum value of xy is

Let x,y,z be real numbers satisfying x+y+z=3,x^(2)+y^(2)+z^(2)=5 and x^(3)+y^(3)+z^(3)=7 then the value of x^(4)+y^(4)+z^(4) is

If x^(2)+y^(2)+z^(2)=1 , where x,y,z in R^(+) then greatest value of x^(2)y^(3)z^(4) is