Home
Class 12
MATHS
Consider f(x) is a real valued function ...

Consider `f(x)` is a real valued function f(x) such that f(x+y)=f(x)+f(y)+2xy, such that f(x) is differentiable for all xinR and (df)/(dx)(0)=0,then answer the following

Promotional Banner

Similar Questions

Explore conceptually related problems

If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (y) for all x,y in R then f(x) is

If a real valued function f(x) satisfies the equation f(x+y)=f(x)+f(y) for all x,y in R then f(x) is

f(x) is a real valued function, satisfying f(x+y)+f(x-y)=2f(x).f(y) for all yinR , Then

A function f:RtoR is such that f(x+y)=f(x).f(y) for all x.y inR and f(x)ne0 for all x inR . If f'(0)=2 then f'(x) is equal to

Let f(x) be a real valued function such that f(0)=1/2 and f(x+y)=f(x)f(a-y)+f(y)f(a-x), forall x,y in R , then for some real a,

Let f(x) be a real valued function such that f(0)=1/2 and f(x+y)=f(x)f(a-y)+f(y)f(a-x), forall x,y in R , then for some real a,

If f is real-valued differentiable function such that f(x)f'(x)<0 for all real x, then

If f is real-valued differentiable function such that f(x)f'(x)<0 for all real x, then

If f is a real-valued differentiable function such that f(x) f'(x)lt0 for all real x, then

If f is a real-valued differentiable function such that f(x)f'(x)lt0 for all real x, then -