Home
Class 12
MATHS
[" Let "alpha" and "beta" be the roots o...

[" Let "alpha" and "beta" be the roots of the quadratic equation "],[x^(2)sin theta-x(sin theta cos theta+1)+cos theta=0],[(0

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha and beta be the roots of the quadratic equation x sin^(2) theta -x (sin theta cos theta + 1) + cos theta =0 (0le thetale 45^(@)) and alpha le beta . Then sum_(n=0)^(oo) (alpha^(n)+((-1)^(n))/(beta^(n))) is to equal to

If alpha, beta are the roots of the quadratic equation x^(2)-2(1-sin 2theta) x-2 cos^(2) 2 theta=0, (theta in R) then find the minimum value of (alpha^(2)+beta^(2)) .

One root of the quadratic equation sin^(2)theta x^(2)-x+cos^(2)theta=0 is given by

If alpha,beta are the roots of the quadratic equation x^(2)-2(1-sin2 theta)x-2cos^(2)(2 theta)=0, then the minimum value of (alpha^(2)+beta^(2)) is equal to

If alpha,beta are the roots of the quadratic equation x^(2)-2(1-sin2 theta)x-2cos^(2)(2 theta)=0, then the minimum value of (alpha^(2)+beta^(2)) is equal to

If alpha,beta are the roots of the quadratic equation x^2-2(1-sin2theta)x-2 cos^2(2theta) = 0 , then the minimum value of (alpha^2+beta^2) is equal to

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha and beta are the roots of the equation (1)/(2)x^(2)-sin2 theta x+cos2 theta=0, then the value of (1)/(alpha)+(1)/(beta) is: