Home
Class 12
MATHS
" (b) "(1+|vec u|^(2))(1+|vec v|^(2))=(1...

" (b) "(1+|vec u|^(2))(1+|vec v|^(2))=(1-vec u*vec v)^(2)+|vec u+vec v+(vec u timesvec v)|^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two vectors vec ua n d vec v prove that ( vec udot vec v)^2+| vec uxx vec v|^2=| vec u|^2| vec v|^2a n d ( vec1+| vec u|^2)( vec1+| vec v|^2)=(1- vec udot vec v)^2+| vec u+ vec v+( vec uxx vec v)|^2

For any two vectors vec ua n d vec v prove that ( vec udot vec v)^2+| vec uxx vec v|^2=| vec u|^2| vec v|^2a n d ( vec1+| vec u|^2)( vec1+| vec v|^2)=(1- vec udot vec v)^2+| vec u+ vec v+( vec uxx vec v)|^2

For any two vectors vec ua n d vec v prove that ( vec u. vec v)^2+| vec uxx vec v|^2=| vec u|^2| vec v|^2

For any two vectors vec ua n d vec v prove that ( vec u. vec v)^2+| vec uxx vec v|^2=| vec u|^2| vec v|^2

For any two vectors vec ua n d vec v prove that ( vec u . vec v)^2+| vec uxx vec v|^2=| vec u|^2| vec v|^2

For any two vectors vec u and vec v prove that (vec udot v)^(2)+|vec u xxvec v|^(2)=|vec u|^(2)|vec v|^(2)

Find 3 -dimensional vectors vec v_ (1), vec v_ (2), vec v_ (3) satisfying vec v_ (1) * vec v_ (1) = 4, vec v_ (1) * vec v_ (2) = - 2, vec v_ (1) * vec v_ (3) = 6, vec v_ (2) * vec v_ (2) = 2, vec v_ (2) * vec v_ (3) = - 5, vec v_ (3) * vec v_ (3)

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec v . vec a=0a n d vec v . vec b=1a n d[ vec v vec a vec b]=1 is a. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) d. none of these

For three vectors vec u , vec va n d vec w which of the following expressions is not equal to any of the remaining three ? a. vec u .( vec vxx vec w) b. ( vec vxx vec w). vec u c. vec v.( vec uxx vec w) d. ( vec uxx vec v).vec w

If vec u , vec v and vec w are three non-coplanar vectors, then prove that ( vec u+ vec v- vec w)dot [( vec u- vec v)xx( vec v- vec w)] = vec u dot (vec v xx vec w)