Home
Class 12
MATHS
int(cosec^2x-2005)/cos^[2005]x.dx...

`int(cosec^2x-2005)/cos^[2005]x.dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(cos e c^2x-2005)/(cos^(2005)x)dx is equal to (a) -(cotx)/((cosx)^(2005))+c (b) (tanx)/((cosx)^(2005))+c (c) -(tanx)/((cosx)^(2005)+c (d) none of these

int(cos e c^2x-2005)/(cos^(2005)x)dx is equal to (a) -(cotx)/((cosx)^(2005))+c (b) (tanx)/((cosx)^(2005))+c (c) -(tanx)/((cosx)^(2005)+c (d) none of these

int(cos ec^(2)x-2005)/(cos^(2005)x)*dx

int(csc^(2)x-2005)/(cos^(205)x)dx is equal to (cot x)/((cos x)^(2005))+c(b)(tan x)/((cos x)^(2005)+c(-(tan x))/((cos x)^(2005))+c(d) none of these )

The value of the integral int("cosec"^(2)x-2019)/(cos^(2019)x)dx is equal to (where C is the constant of integration)

The value of the integral int("cosec"^(2)x-2019)/(cos^(2019)x)dx is equal to (where C is the constant of integration)

int (sec^2x)/(cosec^2x) dx

int(cot^2x-cosec^2x)/x^2dx

Write the value of int(sec^2x)/(cosec^2x)dx .

Evaluate inte^(ln(cosec^2 x-cot^2x))dx