Home
Class 11
MATHS
[" If "a,b,c,d" are in GP,prove that "],...

[" If "a,b,c,d" are in GP,prove that "],[qquad (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c, d are in G.P., then prove that: (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2)

If a, b, c, d are in GP, prove that (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2) .

If a ,b,c , d are in G.P. prove that (a-d)^(2) = (b -c)^(2)+(c-a)^(2) + (d-b)^(2)

If a, b, c and d are in G.P., show that, (b-c)^(2) + (c-a)^(2)+ (d-b)^(2) = (a-d)^(2) .

If a,b,c,d are in G.P., then prove that: (b-c)^2 + (c-a)^2+(d-b)^2=(a-d)^2

If a, b, c ,d be in G.P. , show that (i) (b -c)^(2) + (c - a)^(2) +(d -b)^(2) = (a - d)^(2) (ii) a^(2) + b^(2) + c^(2) , ab + bc + cd , b^(2) + c^(2) + d^(2) are in G.P.

If a,b,c,d are in geometric sequence then prove that (b-c)^(2) +(c-a)^(2) -(d-b)^(2)=(a-d)^2

If a,b,c,d are in G.P.prove that: (i) quad (a^(2)-b^(2)),(b^(2)-c^(2)),(c^(2)-d^(2)) are in G.P. (i) (1)/(a^(2)+b^(2)),(1)/(b^(2)+c^(2)),(1)/(c^(2)+d^(2)) are in G.P.

If a,b,c,d are in GP then prove thst (b+c)(b+d) =(c+a)(c+d)