Home
Class 12
MATHS
f(x)=e^(-x)sin x ln[0,pi]...

f(x)=e^(-x)sin x ln[0,pi]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=e^(x) sin x, x in [0, pi] , then

If f(x)=sin x/ e^(x) in [0,pi] then f(x)

If f(x)=(e^(x)+e^(-x)-2)/(x sin x) , for x in [(-pi)/(2), (pi)/(2)]-{0} , then for f to be continuous in [(-pi)/(2), (pi)/(2)], f(0)=

If f(x)=(e^(x)+e^(-x)-2)/(x sin x) , for x in [(-pi)/(2), (pi)/(2)]-{0} , then for f to be continuous in [(-pi)/(2), (pi)/(2)], f(0)=

Consider f(x) = {{:((8^(x) - 4^(x) - 2^(x) + 1)/(x^(2))",",x gt 0),(e^(x)sin x + pi x + k log 4",",x lt 0):} Then, f(0) so that f(x) is continuous at x = 0, is

Consider f(x) = {{:((8^(x) - 4^(x) - 2^(x) + 1)/(x^(2))",",x gt 0),(e^(x)sin x + pi x + k log 4",",x lt 0):} Then, f(0) so that f(x) is continuous at x = 0,then k=

Consider f(x) = {{:((8^(x) - 4^(x) - 2^(x) + 1)/(x^(2))",",x gt 0),(e^(x)sin x + pi x + k log 4",",x lt 0):} Then, f(0) so that f(x) is continuous at x = 0, is

Let f(x)=(1-sin x)/((pi-2x)^(2))*(ln(sin x))/(ln(1+pi^(2)-4 pi x+4x^(2))),x!=(pi)/(2). The value of f((pi)/(2)) so that the function is continuous at x=(pi)/(2) is:

If f(x) ={((5^(x)-e^(x))/(sin 2x),",",x != 0),(1/2(log 5+1),",",x = 0):} , then

If f(x) ={((5^(x)-e^(x))/(sin 2x),",",x != 0),(1/2(log 5+1),",",x = 0):} , then