Home
Class 12
MATHS
The value of int0^1(8log(1+x))/(1+x^2)dx...

The value of `int_0^1(8log(1+x))/(1+x^2)dx` is a.`pilog2` b. `\ pi/8log2` c.`\ pi/2log2` d. `log2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_0^1(8 log(1+x))/(1+x^(2)) dx is a) πlog2 b) π/8log2 c) π/2log2 d) log2

The value of int_(0)^(oo)log(x+1//x)(dx)/(1+x^(2)) is a) pilog2 b) 2pilog2 c) -pilog2 d) -2pilog2

The value of int_(0)^(1)(8log(1+x))/(1+x^(2))dx is: (1)pi log2 (2) (pi)/(8)log2(3)(pi)/(2)log2(4)log2

Show that int_0^1(log(1+x))/(1+x^2)dx=pi/8log2

int_(0)^(1)(log|1+x|)/(1+x^(2))dx=(pi)/(8)log2

The value of the integral int_(0)^(pi)log(1+cosx)dx is a) (pi)/(2)log2 b) -pilog2 c) pi log2 d)None of these

The value of int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx , is

The value of int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx , is

int_(0)^(1)(logx)/(sqrt(1-x^(2)))dx=-(pi)/(2)(log2)