Home
Class 12
MATHS
[" 39.A simple pendulum has time period ...

[" 39.A simple pendulum has time period "T_(1)" .The point "],[" of suspension is now moved upward according to "],[" equation "y=Kt^(2)" where "K=1m/s^(2)" .If new time "],[" period is "T_(2)" then find ratio of "T_(1)^(2)" and "T_(2)^(2)],[[" (1) "(2)/(3)," (2) "(5)/(6)],[" (3) "(6)/(5)," (4) "(3)/(2)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

A simple pendulum has time period T_(1) / The point of suspension is now moved upward according to the realtion y = kt^(2)(k = 1 m//s^(2)) where y is vertical displacement, the time period now becomes T_(2) . The ratio of ((T_(1))/(T_(2)))^(2) is : (g = 10 m//s^(2))

A simple pendulum has time period T_(1) The point of suspension is now moved upward according to the relation y = kt^(2)(k = 1 m//s^(2)) where y is vertical displacement, the time period now becomes T_(2) . The ratio of ((T_(1))/(T_(2)))^(2) is : (g = 10 m//s^(2))

A simple pendulum has time period T_1 . The point of suspension is now moved upward according to the relation. y = kt^2 (k = 2 m/ s^2 ) where y is the vertical displacement. The time period now becomes T_2 then the ratio of T_1^2 / T_2^2 (g = 10 m/ s^2 )

A simple pendulum has time period T_1. The point of suspension is now moved upward according to the relatiori. y = kt^2 (k = 2 m/ s^2 ) where y is the vertical displacement. The time period now becomes T_2 then the ratio of T_1^2 / T_2^2 (g = 10 m/ s^2 )

A simple pendulum has time period (T_1). The point of suspension is now moved upward according to the relation y = K t^2, (K = 1 m//s^2) where (y) is the vertical displacement. The time period now becomes (T_2). The ratio of (T_1^2)/(T_2^2) is (g = 10 m//s^2) .

A simple pendulum has time period (T_1). The point of suspension is now moved upward according to the relation y = K t^2, (K = 1 m//s^2) where (y) is the vertical displacement. The time period now becomes (T_2). The ratio of (T_1^2)/(T_2^2) is (g = 10 m//s^2) .