Home
Class 11
MATHS
A(0,2),B and C are points on parabola y^...

`A(0,2),B and C` are points on parabola `y^2=x+4` such that `angleCBA=pi/2,` then find the least positive value of ordinate of `C.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A (0,2),B and C be points on parabola y^(2)+x +4 such that /_CBA (pi)/(2) . Then the range of ordinate of C is

Let A (0,2),B and C be points on parabola y^(2)+x +4 such that /_CBA (pi)/(2) . Then the range of ordinate of C is

Let A (0,2),B and C be points on parabola y^(2)+x +4 such that /_CBA (pi)/(2) . Then the range of ordinate of C is (a) (-oo,0)uu (4,oo) (b) (-oo,0] uu[4,oo) (c) [0,4] (d) (-oo,0)uu [4,oo)

Let A (0,2),B and C be points on parabola y^(2)+x +4 such that /_CBA (pi)/(2) . Then the range of ordinate of C is (a) (-oo,0)uu (4,oo) (b) (-oo,0] uu[4,oo) (c) [0,4] (d) (-oo,0)uu [4,oo)

Given A(0,2) and two points B and C on parabola y^(2)=x+4 ,such that AB prependicular BC ,then the range of y coordinate of point C is

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot