Home
Class 11
MATHS
Number of values of x, satisfying the eq...

Number of values of `x`, satisfying the equation `(sqrt3+1)^2x + (sqrt3-1)^2x=2^3x` , is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of solutions of the equation (sqrt(3)+1)^(2x)+(sqrt(3)-1)^(2x)=2^(3x) is

Number of solutions of the equation (sqrt(3)+1)^(2x)+(sqrt(3)-1)^(2x)=2^(3x) is________

Number of solutions of the equation (sqrt(3)+1)^(2x)+(sqrt(3)-1)^(2x)=2^(3x) is________

Number of solutions of the equation (sqrt(3)+1)^(2x)+(sqrt(3)-1)^(2x)=2^(3x) is________

Number of solutions of the equation (sqrt(3)+1)^(2x)+(sqrt(3)-1)^(2x)=2^(3x) is________

Solve (sqrt3+1)^(2_x)+(sqrt3-1)^(2_x)=2^(3x) .

The number of values of x in (0, pi) satisfying the equation (sqrt(3) "sin" x + "cos" x) ^(sqrt(sqrt(3)"sin" 2x -"cos" 2x+ 2)) = 4 , is

The number of values of x in (0, pi) satisfying the equation (sqrt(3) "sin" x + "cos" x) ^(sqrt(sqrt(3)"sin" 2x -"cos" 2x+ 2)) = 4 , is

The sum of values of x satisfying the equation (31+8sqrt(15))^(x^(2)-3)+1=(32+8sqrt(15))^(x^(2)-3) is

The sum of values of x satisfying the equation (31+8sqrt(15))^((x^2)-3)+1=(32+8sqrt(15))^((x^2)-3) is