Home
Class 12
MATHS
(dy)/(dx)=y(log y-log x+1)...

(dy)/(dx)=y(log y-log x+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x(dy)/(dx)=y(log y -logx+1), then the solution of the equation is

If x(dy)/(dx)=y(log_(e)y-log_(e)x+1) ,then solution of the equation is

If x^(logy)=logx , prove that, (x)/(y).(dy)/(dx)=(1-logx log y)/((log x)^(2))

If y log x=x-y prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .

If x^(y) y^(x)=5 , then show that (dy)/(dx)= -(log y + (y)/(x))/(log x + (x)/(y))

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

x^(y)=e^(x-y) so,prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), Prove that (dy)/(dx)=(log x)/((1+log x)^(2))