Home
Class 11
MATHS
" 1.Then the number of solutions of the ...

" 1.Then the number of solutions of the equation "f(f(f(x)))=x" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

(c) quad If f(x)={[-x;,xlt0|x-2|;,xgt=0 ,then find the number of solutions of the equation f(f(x))=1

If f(x)=-x+sin x, then the number of solution(s) of the equation f^(-1)(x)=5, is

Let f_(1) (x) and f_(2) (x) be twice differentiable functions where F(x)= f_(1) (x) + f_(2) (x) and G(x) = f_(1)(x) - f_(2)(x), AA x in R, f_(1) (0) = 2 and f_(2) (0) = 1. "If" f'_(1)(x) = f_(2) (x) and f'_(2) (x) = f_(1) (x) , AA x in R . then the number of solutions of the equation (F(x))^(2) =(9x^(4))/(G(x)) is...... .

Let f (x) = x^(2)+10x+20. Find the number of real solution of the equation f (f (f (f(x))))=0

Let f (x) = x^(2)+10x+20. Find the number of real solution of the equation f (f (f (f(x))))=0

Let F:[3,infty]to[1,infty] be defined by f(x)=pi^(x(x-3) , if f^(-1)(x) is inverse of f(x) then the number of solution of the equation f(x)=f^(-1)(x) are

Let F:[3,infty]to[1,infty] be defined by f(x)=pi^(x(x-3) , if f^(-1)(x) is inverse of f(x) then the number of solution of the equation f(x)=f^(-1)(x) are

Let f_(1) (x) and f_(2) (x) be twice differentiable functions where F(x)= f_(1) (x) + f_(2) (x) and G(x) = f_(1)(x) - f_(2)(x), AA x in R, f_(1) (0) = 2 and f_(2)(0)=1. "If" f'_(1)(x) = f_(2) (x) and f'_(2) (x) = f_(1) (x) , AA x in R then the number of solutions of the equation (F(x))^(2) =(9x^(4))/(G(x)) is...... .