Home
Class 11
MATHS
letf(theta)=tantheta/(1+tantheta) and al...

let`f(theta)=tantheta/(1+tantheta)` and `alpha+beta=3pi/4` the value of `2f(alpha)f(beta)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

let f(theta)=(tan theta)/(1+tan theta) and alpha+beta=3(pi)/(4) the value of 2f(alpha)f(beta) is equal to

Let f(theta)=cottheta/(1+cottheta) and alpha+beta=(5pi)/4 then the value f(alpha)f (beta) is

Let f(theta)=cottheta/(1+cottheta) and alpha+beta=(5pi)/4 then the value f(alpha)f (beta) is

Let f(theta)=(cot theta)/(1+cot theta) and alpha+beta=(5 pi)/(4) then the value f(alpha)f(beta) is

Let f(theta) =(cot theta)/(1+ cot theta) and alpha + beta=(5pi)/4 , then the value of f(alpha)f(beta) is:

Let f(theta)=(cot theta)/(1+cot(theta)) and alpha+beta=(5 pi)/(4) then the value of f(alpha)*f(beta) is (a)1/2 (b) -1/2 (c)2(d) none of these

Statement-I : If f(theta)=(cot theta)/(1+cot theta) and alpha+ beta=(5pi)/(4) then f(alpha) f(beta)=(1)/(2) Statement-II : If alpha+ beta=(pi)/(2) and beta+ gamma= alpha then tan alpha= tan beta+ 2tan gamm Statement-III sin^(2) alpha+ cos^(2) (alpha+ beta)+2 sin alpha beta cos (alpha+beta) is independent of alpha only

If f(x)=(cotx)/(1+cotx)andalpha+beta=(5pi)/(4) , then find f(alpha).f(beta) .