Home
Class 11
MATHS
If x1 and x2 are the roots of x^2+(sint...

If `x_1` and `x_2` are the roots of `x^2+(sintheta-1)x-1/2cos^2theta=0` then maximum value of `x_1^2+x_2^2` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If x_1, a n dx_2 are the roots of x^2+(sintheta-1)x-1/2(cos^2theta)=0, then find the maximum value of x_1^2+x_2^2

If x_1, a n dx_2 are the roots of x^2+(sintheta-1)x-1/2(cos^2theta)=0, then find the maximum value of x_1^2+x_2^2

If x_1, a n dx_2 are the roots of x^2+(sintheta-1)x-1/2(cos^2theta)=0, then find the maximum value of x_1^2+x_2^2

If x_1, a n dx_2 are the roots of x^2+(sintheta-1)x-1/(2cos^2theta)=0, then find the maximum value of x1 2+x2 2dot

If x_(1), and x_(2) are the roots of x^(2)+(sin theta-1)x-(1)/(2)(cos^(2)theta)=0, then find the maximum value of x_(1)^(2)+x_(2)^(2)

Let x_1 and x_2 be the real roots of the equation x^2 -(k-2)x+(k^2 +3k+5)=0 then the maximum value of x_1^2+x_2^2 is

If alpha,beta are the roots of the quadratic equation x^2-2(1-sin2theta)x-2 cos^2(2theta) = 0 , then the minimum value of (alpha^2+beta^2) is equal to