Home
Class 8
MATHS
17. n +B- 3) A- + 2AB +D ben A= If for a...

17. n +B- 3) A- + 2AB +D ben A= If for a matrix A, A2+1 = 0 where I is the identity matrix then ſi 018 20 il 01 ABAY Si ol OB 4) all the above B 10 il о тс . .

Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [(4,1),(7,2)] find a matrix B such that AB = I where I is the unit matrix of order 2.

If A=[[1,0,-32,1,30,1,1]], then verify that A^(2)+A=A(A+I), where I is the identity matrix.

If for a matrix A,A^2+I=0, where I is an identity matrix then A equals (A) [(1,0),(0,1)] (B) [(-1,0),(0,-1)] (C) [(1,2),(-1,1)] (D) [(-i,0),(0,-i)]

If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I) , where I is the identity matrix.

Let A=[(0,1),(0,0) ] show that (a I+b A)^n=a^n I+n a^(n-1)b A , where I is the identity matrix of order 2 and n in N .

For a matrix A, if A^(2)=A and B=I-A then AB+BA +I-(I-A)^(2) is equal to (where, I is the identity matrix of the same order of matrix A)

For a matrix A, if A^(2)=A and B=I-A then AB+BA +I-(I-A)^(2) is equal to (where, I is the identity matrix of the same order of matrix A)

Let A=[[0, 1],[ 0, 0]] show that (a I+b A)^n=a^n I+n a^(n-1)b A , where I is the identity matrix of order 2 and n in N .

Consider the following in respect of matrices A and B of same order : 1. A^(2)-B^(2)=(A+B)(A-B) 2. (A-I)(I+A)=0 harr A^(2)=I Where I is the identity matrix and O is the null matrix. Which of the above is/are correct ?

A square matrix P satisfies P^(2)=I-2P where I is identity matrix.If P^(2)+P^(3)+P^(4)=a^(2)I-b^(2)P then a^2+b^2=