Home
Class 11
MATHS
If arg((z-1)/(z+1))=pi/2 then the locus ...

If `arg((z-1)/(z+1))=pi/2` then the locus of z is

Promotional Banner

Similar Questions

Explore conceptually related problems

If arg((z-2)/(z+2))=(pi)/(4) then the locus of z is

If Arg ((z+1)/(z-1))=pi/6 then the locus of z = x + iy is

If z = x + iy and arg ((z-1)/(z+1))=(pi)/(4) , then the locus of (x, y) is

Statement-1 : The locus of z , if arg((z-1)/(z+1)) = pi/2 is a circle. and Statement -2 : |(z-2)/(z+2)| = pi/2 , then the locus of z is a circle.

Statement-1 : The locus of z , if arg((z-1)/(z+1)) = pi/2 is a circle. and Statement -2 : |(z-2)/(z+2)| = pi/2 , then the locus of z is a circle.

If z = x + iy and arg ((z-2)/(z+2))=pi/6, then find the locus of z.

If arg((z-1)/(z+1))=(pi)/(4) show that the locus of z in the complex plane is a circle.