Home
Class 12
MATHS
sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x...

sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x satisfying sin^(-1)x+sin^(-1)(1x)=cos^(1)x are

Solve: sin^-1x+sin^-1(1-x)=cos^-1x

Solve for x: sin^-1 x + sin^-1(1-x) = cos^-1x

The number of roots of the equation sin^(-1)x-(1)/(sin^(-1)x)=cos^(-1)x-(1)/(cos^(-1)x) is

The number of roots of the equation sin^(-1)x-(1)/(sin^(-1)x)=cos^(-1)x-(1)/(cos^(-1)x) is

The number of roots of the equation sin^(-1)x-(1)/(sin^(-1)x)=cos^(-1)x-(1)/(cos^(-1)x) is (a) 0 (b) 1 (c) 2 (d) 3

Solve: Sin^-1x+sin^-1(1-x)=cos^1x

The value of x satisfying the equation (sin^(-1)x)^(3)-(cos^(-1)x)^(3)+(sin^(-1)x)(cos^(-1)x)( sin^(-1)x-cos^(-1)x)=(pi^(3))/(16) can not be equal to :

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))