Home
Class 12
MATHS
sin^(-4)x+tan^(-1)x=(pi)/(2)...

sin^(-4)x+tan^(-1)x=(pi)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)x+tan^(-1)x=(pi)/(2)

If sin^(-1)x+tan^(-1)((1)/(2))=(pi)/(2) then x=

If A = (1)/(pi) [{:(sin^(-1)(pix),, tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi)),,cot^(-1)((x)/(pi))):}] B = (1)/(pi) [{:(-cos^(-1)(pix),, tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi)),,-tan^(-1)((x)/(pi))):}] then A - B is equal to

If tan^(-1)(x^(2)+3|x|-4)+cot^(-1)(4pi+sin^(-1)sin14)=(pi)/(2) , then the value of sin^(-1)(sin2x) can be equal to

If tan^(-1)(x^(2)+3|x|-4)+cot^(-1)(4 pi+sin^(-1)sin14)=(pi)/(2), then the value of sin^(-1)sin2x is (a)6-2 pi( b) 2 pi-6( c) pi-3 (d) 3-pi

Solve the equation: cos^(2)[(pi)/(4)(sin x+sqrt(2)cos^(2)x)]-tan^(2)[x+(pi)/(4)tan^(2)x]=1

Prove that (1- sin 2x)/(1+ sin 2x) = tan^(2) .((pi)/(4)-x)

Number of solutions of the trigonometric equation cos^(2)((pi)/(4)(cos x+sin x))-tan^(2)(x+(pi)/(4)tan^(2)x)=1in[-2 pi,2 pi] is

Solve for x:2tan^(-1)(sin x)=tan^(-1)(2sec x),x!=(pi)/(2)