Home
Class 12
MATHS
" The probability that "sin^(-1)(sin x)+...

" The probability that "sin^(-1)(sin x)+cos^(-1)(cos y)" is an integer where "x,y in{1,2,3,4}

Promotional Banner

Similar Questions

Explore conceptually related problems

The probability that sin^(-1)(sin x)+cos^(-1)(cos y) is an integer x,y in(1,2,3,4), is

The probability that sin^(-1)(sinx)+cos^(-1)(cosy) is an integer x,y in {1,2,3,4} is

The probability that sin^(-1)(sinx)+cos^(-1)(cosy) is an integer x,y in {1,2,3,4} is

The probability that sin^(-1)(sinx)+cos^(-1)(cosy) is an integer x,y in {1,2,3,4} is

The probability that sin^(-1)(sinx)+cos^(-1)(cosy) is an integer x,y in {1,2,3,4} is

tan (sin ^(-1)x+sin ^(-1) y) +tan (cos^(-1)x+cos ^(-1)y)

Find the area bounded by the curves y=(sin^(-1)(sin x)+cos^(-1)(cos x)) and y=(sin^(-1)(sin x)+cos^(-1)(cos x))^(2) for 0<=x<=2 pi

If sin^(-1)x +sin^(-1)y =pi then cos^(-1)x +cos^(-1)y is :