Home
Class 12
MATHS
[" Example "19" For anytwo vectors "vec ...

[" Example "19" For anytwo vectors "vec a" and "vec b" ,we always have "|vec a*vec b|<=|vec a||vec b|" (Cauchy) "],[" Schwartz inequality)."],[" Solution The imple."]

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two vectors vec a and vec b, we always have |vec a+ vec b|<=|vec a|+|vec b|

For any two vectors vec(a) and vec(b) , we always have |vec(a)+vec(b)|le|vec(a)|+|vec(b)| (triangle inequality).

For any two vectors vec(a) and vec(b) , we always have |vec(a).vec(b)| le |vec(a)||vec(b)| . (Cauchy Schwartz inequality)

For non-zero vectors vec a and vec b if |vec a+vec b|<|vec a-vec b|, then vec a and vec b are

For any tow vectors a and b show that (vec a+vec b)vec a-vec b=0hArr|vec a|=|vec b|

If vec a and vec b are unit vectors such that |vec a xx vec b| = vec a . vec b , then |vec a + vec b|^(2) =

vec a,vec b,vec c are three non zero vectors no two of which are collonear and the vectors vec a+vec b be collinear with vec c,vec b+vec c to collinear with vec a then vec a+vec b+vec c the equal to ?(A)vec a (B) vec b(C)vec c (D) None of these

For two vectors vec A and vec B | vec A + vec B| = | vec A- vec B| is always true when.

If vec a and vec b are two vectors such that vec a + vec b is perpendicular to vec a - vec b ,then prove that |vec a| = |vec b| .

For non-zero vectors vec(a) and vec(b), " if " |vec(a) + vec(b)| lt |vec(a) - vec(b)| , then vec(a) and vec(b) are-